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The equations presented in [1] for the evolution of homogeneous turbulence in a density-stratified medium 

are investigated analytically. The problem involves the small parameter e = Fr 2. Applying variants of the 

small-parameter method, it is possible tocalculate the frequency of internal waves and a number of 

asymptotic regimes in the development of turbulent velocity and scalar fields over time. The so-called far 

field of evolution, i.e., the field of large values of r (r >> 1), is considered, in which the differential order 

of the initial system of equations is lowered. 

In a number of recent experimental and theoretical works devoted to analysis of the decay of free turbulence 

in a density-stratified medium, periodic changes in the turbulent mass flux, square of velocity fluctuations, square 

of scalar fluctuations, as well as in other characteristics of turbulence have been discovered. A rather complete 

analytical review of these publications can be found in [1 ]. We can mention additionally work [2 ], in which, using 

a direct numerical simulation on the basis of Navier-Stokes equations and statistical averaging over an ensemble, 
oscillations of statistical moments were discovered and several periods from the start of the process were calculated. 

Application of the method of direct numerical simulation is limited to molecular Prandtl numbers close to unity and 
to small time intervals. Experimental methods also do not permit investigation of turbulence decay over large time 
intervals, in view of the smallness of the quantities measured. 

In practically important cases of the atmosphere and ocean, the theory of homogeneous turbulence can be 

an adequate alternative method for investigating turbulent fields over very large periods of time. This cannot be 

done by other investigation methods. 

It is known that the evolution of turbulence in a density-stratified medium is essentially a two-scale process, 
in which disturbances with large spatial scales can be attributed tobuoyancy forces, and those with fine scales, to 

viscous dissipation [3 ]. The time scales corresponding to these two processes also differ, and this is used in the 
present work. 

We consider the evolution of turbulence produced by a turbulizing grid in a medium with a homogeneous 

velocity field in the presence of a constant transverse density gradient caused by the gravity force field. 

The initial system of equations in the present work coincides with that of [1 ], which was obtained by a 

more complex second-order model developed in [4]. Analytical investigation of the equations of homogeneous 

turbulence that contain the small parameter e will aid in explaining the trends discovered earlier, describing the 

dependence of the solution on the Prandtl and Froude numbers, and determining the dependence of the frequency 
and amplitude of vibrations on the factors indicated, and, on this basis, will allow conclusions to be drawn about 

the velocity and mechanism of turbulence decay in a density-stratified medium. 

The system of equations from [1 l can be written in dimensionless form as 

d-----~ = - 2  d + ~ ( I  - d )  3 - - ~ - -  1 + ~ + ~ Q - - ~ F r  2 T,~' 
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--=d~ - 2  1 + Q - ~ - F r  2 -~u' 

- ( F ~ ' - 2 ) - 2  l - d  ~ o ~ +  ~ -  Fr 2 ~ , 

, o  - Fr 2 d O - 
dr Fr 2 O 

( l - d )  + 1 0 ~  + 2 d  a ~ +  (1) 

ae [ 
a%-- 2 I - Q  -~p 

dTp .. 4 (  3 )  
d% = (Fp2- 2) + F;~ T--E d l -  r , , -  ' 

where the functions of interaction of turbulent vortices of different scales for the velocity and scalar fields, F~**, 

F~p~, F~[, are calculated on the basis of expressions given in [I ]: 

15 d,  F;I= ( l - d ) ,  F ; ~ f 2 + ~ d ,  

d(R 2) = 1 - 2x/1 + 6ulR2 is the parameter of the interaction of turbulent vortices of different scales from [4 ], d 

E (0.1); Ju -- 2800, a| is the asymptotic value of the turbulent Prandtl number for r -* 0% and Fr = 0, R| is the 

asymptotic value of the ratio of scales Tu/T p for r -~ | and Fr = 0. The asymptotic values of a| and R~ are taken 
from [5 ]: 

~ (2.)3,,], 
a ~ 1 7 6  10~ 1 -  ~ , (2) 

,[ ][ (2.),., 1' R| = ~  1 - k ~ )  + o  3/2 1 - 2 ~ + 0 1 / 2  (3) 

Note that the Froude number  introduced in [1 ] represents the ratio of the mass lift forces to the forces of 

inertia and actually is the inverse of the generally accepted one. For the majority of practically important cases this 

parameter  is very small. The  experimental  data published in the literature relate either to atmospheric air  or to 

salt water. Estimation of the parameter  ~ = Fr 2 entering into Eq. (I) for these most important media (if we exclude 

very saturated saline solutions from consideration) shows that it is of the order  of 10 - 3 -  10 -4 . 

The  system of differential equations with the small parameter  e can be effectively solved analytically by 

approximate methods of expansion in terms of the small parameter,  and frequently the quality of such a solution, 

i.e., its simplicity and applicability to the analysis, exceeds the quality of a numerical solution. On the other  hand,  

such a solution is nevertheless formal and must be confirmed to a sufficient extent by other  methods of investigation. 

To use the small-parameter  method, it is necessary to expand all the functions in Eqs. (1) in powers of e 

and unite the terms with the same power of e into solvable subsystems. A direct expansion in the small parameter  

t in system (1) turns out to be singular for the region with r > 1 in the sense of asymptotic expansions [6 ], since 

such a solution will involve positive powers of r that grow with the number of approximation. As shown below, such 

a singularity is caused by the decrease in the functional order  of the system at large values of r. To obtain an 
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asymptotic expansion in the small parameter that is applicable at large values of r, it is necessary to perform a 

regularizing replacement of variables and coordinates by introducing the small parameter e into them. 

The a priori information on the solution suggests the class of functions from which one should construct 

its approximate analog. According to the results of [ 1 ], the behavior of the functions of the system can be presented 
in the form of monotonic relations, on which decaying vibrations are imposed, with the amplitude and frequency 

of oscillations varying very slowly at large values of r. Proceeding from the form of numerical solution, an 

approximate solution for all the functions f in Eqs. (1) can be constructed as a sum of a harmonic function of 

variable amplitude Yand of a certain smooth component/~, i.e., .f -~ fi'+ f"= f ' +  ["/-~, w h e r e / "  is the amplitude and 

Y" is the harmonic function, with these functions being dependent on different time scales. 
According to this representation of the unknown functions, we will construct an expansion in the small 

parameter whose terms, being grouped by identical powers of e, will give systems of differential equations for 

determining ~, f " ,  a n d / " .  When possible, these systems will be solved analytically, but even when it is impossible, 
such a d;vision into ~,jT, and fi" turns out to be very useful, since it allows one to investigate the frequency of 

vibrations and the rates of degeneration of various functions. 

We introduce the following set of new variables and coordinates: 

q = e T p Q / E ,  O = e O / e ,  K =  R 2 2 / E ,  R = T u / T  p ,  t = tTp  , f ' =  e r ,  (4) 

where e - e I/2. The function K represents the fraction of the energy of transverse pulsations in the kinetic energy 

of turbulence. The function R is the ratio of the time scales of the velocity and scalar fields, the function 0 is the 

ratio of the potential energy of the scalar field to the kinetic energy of turbulence, and the functions t and f ' a r e  
used below as independent variables. In this notation, the initial system of equations (1) can be written in a shorter 

form which is more suitable for analysis: 

i 

d K  - 7d ( K -  1/3) 
t ~  = e R + 2eq ( K -  4 / 5 ) ,  

t d R  4 = t-~ d (1 - R / R o . )  - 2 tq  (1 - a2R ) R ,  

= 2t - 1 t9 + 2tq (1 + O), (s) 

dq = eq I I  ( - d-~'-33 - ' - C t l  Pl t--d-~ t2A] + 2 10d K + + 2eq 2 , 

dt 
dT - ~P'  

d E  2eE 
t dr - R 2 t q E ,  

where 

- -  = , = o oo + / R ,,o , 

p =  5R----~+--~-R-->0 and AI = K + O d K -  - . (6) 

In the autonomous differential system (5) it is possible to introduce t instead of r as a new independent 
variable. Then it becomes evident that for E --, 0 the fourth equation in (5) degenerates into an algebraic one: 
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t 2A l  "- O. This degenerate  case corresponds to high values of t in Eqs. (5), since in this case the term t 2A!  becomes 

predominant in the fourth equation. A solution corresponding to such degeneration is called external,  and in a 

certain sense it should be akin to the solution of the initial problem (5). 

We note that at d = const the equation for E in system (5) can be solved separately from the system, since 

in this case the first five equations do not contain a dependence on E. Such a situation is observed in the case of 

asymptotical ly large (R,~ >> 1) and asymptotical ly small (R,I << 1) values of turbulent  Reynolds  numbers.  At 

turbulent Reynolds numbers not satisfying these two extreme cases, it is more convenient for the analysis to replace 

the equation for E in system (5) by the equation for d. This is equivalent to the equation for the turbulent Reynolds  

number. The  differential equation for the function d can easily be obtained from the definition of this function and 

from system (5): 

t ~ = e p t  2 ( 2 - a 2 R  ) q , (7) 

where Pl is the logarithmic derivative of d with respect to R~. Its computation yields 

) 

---- d d ~ R ~  = ( l / ( l  + r  1 / 2  - 1) (1 + (l + C S u / R 2 ) l / 2 )  - l  = d e  
Pl d (R 2) 1 + d "  

The  function t(O in system (5) increases monotonically with time and can be used as an independent  

variable that  replaces ~r in Eqs. (5) and (7). We shall use the independent  variable t not instead of r but together  

with r (more precisely, with O applying a variant of the well-known method of many scales in which expansion of 

derivatives is made in several variables [61. Thus ,  let us represent the unknown functions in the form of expansions: 

K = R" (0  + e~" (t, f ' )  + O (e2), R = ,~ (0  + eR (t, f ' )  + O (e2),  0 = 0"(0 + e~'(t, f ' )  + O (e2),  

d = ~ ( t ) + e d ' ( t , f ' ) + O ( e 2 ) ,  q = q ( t ) + e ~ ' ( t , f ' ) + O ( e 2 ) ,  (8) 

where O (...) are functions of the order.  It is shown below that the first terms correspond to the smooth component 

of the solution onto which the vibrations in the form of the second term are imposed in Eq. (8). We note that the 

splitting up of all the functions, except q, is made in t and of q in e ffi e I/2. Such an approach makes it possible to 

simplify representation,  since then it is not necessary to apply an asymptotic-union procedure. On the other  hand,  

the alternative method of matched asymptotic expansions (MAE) allows one to substantiate precisely this s t ructure  

of the assumed approximate solution, i.e., the presence of various degrees in the expansions for q and other  

functions. We will consider in brief the scheme of the method of MAE for the given problem. 

According to this method, a solution can be constructed in the form of a sum of internal and external  

solutions, minus their  coinciding part [6]. In this case, the external  solution is represented by circumflexed 

functions. The  internal expansion is carried out using the "stretched" variable E For a first approximation of the 

internal expansion in e a simple solution is obtained: q is a harmonic function, and all the remaining functions are 

constants,  which, as ascertained from the principle of asymptotic-union, are equal to the external solutions for the 

corresponding functions. Substituting these solutions into the system of the second approximation of the internal 

expansion, we find the oscillations of the remaining functions; they will have the factor e 2 = e. 

Let us substitute expansion (8) into system (5) and consider, for example, the first equation in system (5). 

Substituting into it Eq. (8), we obtain the following equation accurate to terms of the order  of ee inclusively: 

dE o7< 
e p t  ~ + ee t  - 

d t  OU 
- -  - - 7e ( ~ - 1/3)  + 2eq ( K - 4 /5 )  + 2eeq'( K - 4 / 5 ) .  

Collecting in this equation terms of different orders of smallness and assuming from the definition of the 

far region that T >> e, we obtain 
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3c 
p t - - =  - 7  

dt 
d ' ( K - 1 / 3 )  + 2 ~ ( K -  4 / 5 ) ,  t O - - ~ K = 2 ~ ( K - 4 / 5 ) .  

of" 

Proceeding in a similar manner in the other equations of system (5), we write two systems. The system of 
equations for the circumflexed functions has the form: 

A pt dK 7 d ' ( K  - 1/3)  + 2 q ( K  4 /5 )  

dt 

^ ~ A A 

t p d R  _ 4 ~(1 - R / R |  2(1 - c t 2 R ) R q  
dt 5 

2 A 

t A I = 0 ,  (9) 

A 

tp ,s ( ~ )  = p~ 2 (2 - ,~2R ) , 
dt 

,p 27: ,," 
. . . . .  2qE , 
dt ,~ 

where it is assumed that the functions a l ,  32, Al, Pl ,  and Fu* depend on the circumflexed functions, i.e., on the 
smooth components in expansions (8). 

The oscillations of the functions in system (5) are described by the following system: 

t ~ = 2 ~ ( K - 4 / 5 ) ,  t - - = - 2 ~ ( i - a 2 R )  R ,  t - - =  + f ( t )  1 

~ -  Of" Of" 

g o (~) "- o~ ^ 
t - - = 2 ~ ' ( l  + O ) ,  t = - 2 p l ~ ' ( 2 - a z R ) ,  t - - =  - 2 7 E ,  

Of" Of" Of" 

(10) 

where 

dq -1 ' ^ 
f ( t )  = - t - ~ +  q 2 -  -- lOd K -  a I + 

and "41 is represented by the second term of the expansion for the function A I 

A l = A  I ( K , O , d )  + tA  t .  

- ' 2  + 2q , (11) 

(12) 

The equation for the amplitude of oscillations of q follows from the terms of expansions with the power ee 

in the fourth line of system (5): 

0__~ 
' ~ "  ( 1 3 )  tp = q" 2 - -- 10a ^ - -  a I + p + 4qq,  

Ot 

AS shown below, the amplitudes of oscillations of thc remaining functions arc proportional to the amplitude 

of vibrations of the mass flow. 
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Fig. I. Dependence of the turbulent mass flow ql = TpQ/E and of the ratio 

of time scales R = Tu/T o on time ~'-- Frr; l) numerical solution of system of 

equations (5)-(7);  2) numerical solution of system of equations (9) and (15); 

3) data of II 1; a) qt(t'); b) R ( ~ .  
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Fig. 2. Dependence of the ratio K = R22/E and of turbulent  kinetic energy E 

on time V= Frr; 1) numerical solution of system (5)-(7);  2) numerical solution 

of system (9) and (15); 3) calculated data of [1 ]; a) K ( ~ ;  b) E ( f L  

The  system of equations (9) for the circumflexed functions coincides with the degenerate  system for 

r --- 0 in system (5). The meaning of the degenerate  system follows from expansions (8), i.e., it is a system that  

describes the behavior of the functions averaged over oscillations. The  value of the variable t in Eqs. (9) is not 

small; consequently,  A 1 = 0. 

Differentiating this relation with respect to t, we obtain 
/ x  

d A  1 ^ 
pt- -~  = 2t (c 1 + c2q) = 0 ,  (14) 

where 

~ A A A . ~ .  

c I = - - - ( 1  + O d ) d ' ( K -  I / 3 )  R - I  + 3 [d (K - 1 / 3 )  - 2 /31  
2 2 

c 2 = ( 1  + O d ) ( K - 4 / 5 ) +  l d ( K -  1 / 3 ) - 2 / 3 1 ( 1  + 3 ) + O ( K -  l / 3 )  p t ( 2 - a 2 R ) .  

/ x  

Let us express q from Eq. (14) as 

q = - -  C l / C  2 . 

1 - I  
R 

(15) 

Relation (15) in the degenerate  system for smooth components replaces the fourth line of system (5). In 
A 

this case, the expression A 1 = 0 itself is used to find 0, and thus it replaces the third line in system (5) in the 

system of equations for the circumflexed functions. Otherwise, this system of equations (we will denote  it as (9) 

and (15)) coincides with system (5)-(7).  

As follows from comparison of Figs. 1 and 2, the solution of the system of equations (9) and (15) 

corresponds well on the average to the oscillating numerical solution of system (5)-(7).  Just as in [1 !, the initial 

condit ions were prescr ibed from the exper imenta l  values of 171 for water  (a = 800, Fr  = 3 .67-10 -2,  M = 
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5.08 .10-2m)  and corresponded to the following set of data: R220 ,= 3.47.10 -2,  E 0 = 1.33.10 - I ,  Tp0 = 38.4, TuO - 

4 3 . 3 ,  Qo = 3 . 3 1 . 1 0  - 3 ,  O o = 0 . 1 5 3 .  The amplitude of the oscillations of the function ql increases with time, but 

more slowly than Tp, as a result of which the amplitude of the oscillations of the function Q / E  decreases with an 

increase in 3. The  oscillations of the functions R and E are almost imperceptible against the background of their  

mean values, and the oscillations of the ratio K also become small with time compared to K. The points in Figs. 1 

and 2 show the data of [1 ] for comparison. It is evident that for all the functions there is a certain systematic 

discrepancy between the present calculation and the data of [1 ]. As is seen, this unexplained difference mainly 

concerns the amplitudes of oscillations; the mean values coincide satisfactorily. In what follows it will be shown 

that in our numerical calculations the amplitudes of oscillations agree excellently with those predicted analytically. 

Let us go over to the solution of the system of equations (10). We will perform partial differentiation of the 

third equation in (10) with respect to r~. �9 

02ff o g ,  
- t  

OF 2 OV 
(16) 

A differential equation for the function A 1 can be obtained by d~ i f f e ren t i a~  ,~:~h resl~ttc~ ~'~, ~n iF, q (6). 

It has the form 

dA ! 
t--~-- = 2e (c I + c2q ) , ~17) 

Expanding in this equation in powers of e, according to Eq. (8), we obtaha the ffollowmg equaI im =.in :a~fiitkm to 

Eq. ( 1 4 ) :  

t = 2c2~" , ;(18) 
dr- 

Analysis of c 2 shows that this quantity is negative. Therefore,  using the no ta6oe  

2 
w = - 2c2~ (19) 

we write for ~" 

+ " = o .  (20)  
Of -2 

The solution of Eq. (20) is a harmonic function of general form multiplied by an arbi t rary function of t. 

Separating variables in Eq. (20) and substituting q'= q ' ( t )q"(~,  we obtain 

q" = sin (col'+ 9'0). 

Substituting ~': ~'-- ~"(t) sin (wf '+  r into system of equations (11), we write the solution for the wave 

components of the remaining functions. For example, for the function K we obtain 

= = - 2 - 4/5) 
t~o cos (oaf + 7'0), 

from which we conclude that 

K '  = - 2 ~ ' ' (  K - 4 / 5 )  K" = cos (cot"+ 9%)- (21) [W ' 
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Fig. 3. Comparison of oscillation periods calculated by formula (19) (curves) 

and those given in [1 ] (points): l, 2) for water; 3, 4) for air. 

Similarly we determine the amplitudes and phases of the remaining functions: 

A 

~' = 2 ~"(1 - ,~2R) ,~ ~" = cos (o )r+  ~o0) (22) 

~" = - 2 q"O + ~ ,Y" = cos (of'+ ~'0) 
to) ' 

(23) 

A 

d-' = 2 p  I ~" (2 too- a2R ) , d"  = cos ( tar '+ ~o0) , (24) 

A 

~' = 2 ~ ' e  ~" = cos (col'+ ~'o) (25) 

From Eqs. (21)-(25) it follows that the amplitude of the oscillations of all the functions is proportional to 

the amplitude of the oscillations of the mass flow; all the functions oscillate with the same period, and the phase 

of the oscillations of all the functions is shifted by exactly a quarter period from the phase of the oscillations of q. 

At large values of t, the amplitudes of the oscillations of all the functions, except q, are small. Exactly the same 

character  of change of the functions was noted in the numerical computation in [1 ]. The  relationship of the 

amplitudes of o ther  functions with the amplitude of the oscillations of q is dictated by relations (21)-(25).  

Comparison of the oscillation period T = 2~/co calculated by Eq. (19) shows complete agreement with [ 1 ] 

within the limits of comparison accuracy (Fig. 3). It can be seen that the periods that differ for z --, = correspond 

to cases of water with cr = 800 and air with a = 0.73. This occurs because of the differences between the values of /X 

K for these two cases. Correspondingly,  in the region with t - 1 there is a small difference between the periods. 

In system of equations (11), the oscillations of all :he functions are generated by vibrations of the transverse 

turbulent mass flow that are caused by oscillations of the function At; see Eq. (16). The function -41 (we shall call 

it the amplitude function, since the oscillation amplitude depends on it) oscillates following the cosine law. After 

differentiation of Eq. (18) with respect to if, the corresponding differential equation of the second order  is 

a2al 2 / (0  
- -  + t O 2 A l  = - t.o 2 
Of "2 t 

from which the dependence of -41 on f ' can  be presented in the form 

AI - ' ~  - -  f(l)/t2 + AI' cos (wf '+  ~o0) , 
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Fig. 4. Oscillating components  of the functions of ~he model over the initial 

length. 

where A~ is a function only of t. In contrast  to the other  functions with a tilde, Al has an addit ive component  that  

is dependent  on t. Since A I =, 0, this component  represents  a very small (at large values of t) mean value of the 

quantity A l about  which its oscillations occur. The  ampli tude of the oscillations of ~" is associated with the ampli tude 

of the oscillations of A'l by  the relation 

~ '  = ,~l't/to " (26) 

Represent ing ~ ' in  Eq. (13) in the form of the product ~,,- ~ " ~ I ~ " ( ~ ,  we find the extent  of the change of 

~"(t) from the ord inary  differential equation 

~ , d t = P  - 2 -  - 10d K - - ~ ,  + p + 4  . 

When z -~ ~ ,  the r ight-hand side of Eq. (27) tends to a constant  value. This  de termines  the power-law 

character  of the change in the ampli tude of the oscillations of ~ 'and,  consequently,  of all the remaining functions. 

This problem will be considered in detail in an analysis  of the final stage of decay. 

The  next  step in verifying the relations obtained is comparison of the oscillatory components  in a numerical  

solution with their  analytical expressions.  For this purpose, from the numerical solution of the system of equations 

(5)-(7) we will subtract  the solution of system (9), (10), and (15) for the corresponding functions. For a more 

accurate separat ion of oscillatory components  one must select boundary  conditions for the circumflexed functions 

that may  differ somewhat  from the boundary  conditions of system (5)-(7).  The oscillatory components  plotted in 

Fig. 4 correspond to the fo i iowing  set of differences 7 - f  in the initial section: K - K = 9 .0-10 -3  , R - R = 

1.0- 10 -1 , ~" - 0 = n.162, E - E = - 2 . 7 -  10 -4,  d - d = 1.29.10 -2. The  initial length of the solution trajectory was 

selected for comparison,  since here the ampli tudes are higher and oscillations are more noticeable, and  in order  to 

verify how well the far-region approximation works for moderate  values of T . 
P 

We will analyze  the mutual positions of the phases of the oscillations of the individual functions in Fig. 4. 

The oscillations of E and 0 are in opposite phase, since these energies are partially t rans formed into one another ;  

a decrease in one of them causes an increase in the other. A decrease in the pulsations of densi ty  in the first place 

causes an increase in the pulsations of the vertical velocity component;  the oscillations of K are in phase  with the 

oscillations of E and  are more pronounced. There  are two positions in which the pulsational turbulent  t ransverse  

mass flow is equal to zero. We shall call them A and B. In position A the functions 0, R, and  d are at the maximum,  

whereas  E, K, and Ai are minimal; the sign of the mass flow changes from plus (upward) to minus (downward) ;  

after  surfacing of the light molecules, this situation corresponds to a greater  densi ty stratification than is indicated 

38 



tO 2 

10 I 

1 

ld' 

10 

~1,~ 7 5 J 
l ~ " O " ~ .  ~,,~.o..o.o.o,o.+,<>~'o' 

" : . .  ~ , - /_ .  _ .',~. ~h~ ,=  ..,~.; - . . ~ r ~  I 

"~.<.- f l  ~ / 

+ - 2 " - 1 0  " % _  
o - 4 " - 12 " ~ . . ? . .  �9 
O - 6 0 - I,/-,+ ~ ' + ~ . = ' . . . . ,  
o - 8 - " ' ~ .  

10 100 "~ 

Fig. 5. Comparison of the amplitudes of the oscillations of the functions in the 
model (points) with those calculated by formulas (21)-(26) (curves): 1, 2) IK I; 

3, 4) IR'l; 5, 6) I~'1; 7, 8) ~;  9, 10) IE'I; 11, 12) I~'l; 13, 14) IA i I. 

by the Fr and Nay numbers. In this position velocity pulsations are partially quenched. In the opposite equilibrium 

position q (B), the turbulent mass flow changes its sign from minus to plus; after the lighter molecules descended 
downward, the density field becomes more uniform, density pulsations are quenched, and velocity pulsations 
increase. 

Having distinguished oscillations, it is possible to analyze the change in their amplitudes. Figure 5 presents 
a comparison of the amplitudes calculated by solution of total system of equations (5)-(7) with the amplitudes 
calculated by solving the smoothed system of equations (9) and (15) together with Eqs. (27) and (21)-(26).  
Oscillatory components that are small compared to the mean value of the functions are distinguished with a some 
loss of accuracy. For example, in Fig. 5 the amplitudes of oscillations of E, which are especially small begin to 
deviate with time from the predicted values. For more exact discrimination of the components .Tit is necessary to 

more accurately select the initial conditions for f~. The large amplitude deviation for R near ~'= 20 has a fundamental 

character. At just this value of f ' the  change in the sign of the amplitude of R' occurs. Near this point one should 

take into account the next terms of the expansion in the small parameter, and this should lead to the allowance for 

dispersion. By the way, in numerical computation the change in the period of oscillations of R near this point is 
evident, but the period of oscillations common for all the remaining functions does not change. Evidently here we 

have inversion of the internal wave for R. 

Discussion and Conclusions. A detailed analysis is made for a system of differential equations (1) that 

describe the evolution of homogeneous turbulence in the presence of a constant gradient of the density field. 

The use of an approximate small-parameter method in conjunction with the method of many scales made 
it possible to isolate mathematical systems that describe regular oscillations (10) and variations averaged over these 

oscillations (9) and (15). 

The use of the method of many scales is based here on the fact that turbulent characteristics are practically 

unchanged in the far region during a period of one wave. This difference in the time scales of the processes makes 
it possible to carry out their mathematical separation. 

The change in the amplitude of the oscillations of q is described by differential equation (13), and the 

amplitudes of the oscillations of the remaining functions and their phases are related to the amplitude and phase 
of the oscillations of q by algebraic formulas relations (21)-(26). For the oscillatory component of the mass flow 

~'we obtained wave equation (20), the change of the frequency of oscillations in which occurs according to Eq. (19). 

As a result of the analysis we can give the following qualitative description of the processes studied. 
At the initial moment of time, due to intense mixing behind a grid or any other turbulizing device, turbulent 

molecules turn are swept into flow regions with a mean density that differs from the density of these fields. 
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Therefore, they experience the action of the resultant of the force of their weight and of the Archimedes torce. The 

resultant of these forces depends linearly on the shift of the molecule from the equilibrium position. On the other 

hand, the presence of a restoring force proportional to the displacement from equilibrium leads to the appearance 
of harmonic oscillations. 

From the pulsations of velocity field under the action of the mean density gradient, regular oscillations are 

distinguished that constitute an internal gravity wave. The energy of this wave is drawn from the pulsation of the 
A 

density field and from the velocity field pulsations. The presence of terms proportional to the flux q averaged over 

fluctuations, Eqs. (9), corresponds mathematically to the reverse process of the transition of the energy of regular 

oscillations into the energy of small-scale irregular pulsations. In the final stage of degeneration these terms turn 
out to be predominant in the equations. 

The relation A l -- 0 is the principal one for the analysis in the entire far field, which is defined in the work 

as satisfying the condition Tp >> 1. However, it is possible to define it equivalently but differently as a region in 

which the relation A 1 = 0 is satisfied approximately. From the physical point of view this expression specifies 
equilibrium state of the mutual values of the squared density pulsations and of the square of pulsations of the 

vertical velocity component. 

In a turbulent gravity wave, a change in the energy of the density pulsations about the equilibrium position 

changes the energy of vertical velocity pulsations and vice versa. This results in attenuating oscillations of the 

quantity A I = K + O(d(K - 1/3) - 2/3) with respect to the mean zero value. The oscillations of A l initiate 

oscillations with a n / 2  phase shift of the turbulent transverse mass flow; this makes all the remaining functions in 

system (5) oscillate with the same frequency. 

The approximate analytical solutions constructed in the work are confirmed by numerical calculation. 

The work was partially supported by a grant from the Soros Foundation awarded by the American Physical 

Society. 

N O T A T I O N  

r*, dimensional time; U, flow velocity; M, dimension of grid cell; r ffi r * U / M ,  dimensionless time; E* = 
~ l  2 + ~22 + u2), kinetic energy of turbulence; E ffi E*/U 2, dimensionless kinetic energy; R22 ffi u-~/U 2, vertical 

component of the tensor of velocity pulsations; ep, rate of dissipation of density pulsations; e u, rate of dissipation 
of velocity pulsations; T u ffi (E*U)/(euM),  time scale of velocity field; T o = (/~2U)/(%M), time scale of density field; 

'- - 2 -  2 Q ffi (-u- '~ ') / (UMd75/dx2),  dimensionless turbulent transverse mass flow; O ffi (p / (Md~5/dx2) , square of density 

pulsations; a, molecular Prandtl number; e ffi Fr 2, small parameter; Fr = N B v M / U ,  Froude number; NBv = 
(qd75/~dx2) t/2, Brunt-V~iis~ifii number; R,I ffi (SETuRe) 1/2, turbulent Reynolds number; Re ffi U M / v ,  Reynolds 

number. 
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